Tag Archives: Neurology

Study looks at whether daily limb compressions reduce dementia

A new study is looking at whether short, daily bouts of reduced blood flow to an arm or leg can reduce the ravages of dementia.

It’s called remote conditioning, and researchers say it activates natural protective mechanisms in the brain that should help about half of dementia patients.

The approach uses a blood pressure cuff-like device to temporarily restrict blood flow to an appendage repeatedly for a few minutes each day, which increases blood flow to other body areas, including the brain, said Dr. David Hess, Chairman of the Department of Neurology at the Medical College of Georgia at Georgia Regents University.

Increased flow activates endothelial cells lining blood vessels, calling to action a series of natural protective mechanisms that can be effective wherever blood travels, Hess said. Interestingly, the mechanisms seem most active in areas of impaired flow, such as those deep inside the brain, where most dementia has its roots.

“The most powerful way to protect the brain is to cut off blood flow to it for a short period of time to condition it,” said Hess. “What it does is elicit these protective pathways so when potentially lethal ischemia comes, you can survive it.” What it also appears to do is help permanently improve blood flow to these deep regions of the brain.

Age and being a female are two of the major risk factors for dementia. With nearly 15 percent of the U.S. population age 65 and older and half being female, Hess calls dementia a major health concern. “This is a big epidemic coming. This is a big killer and disabler, and everybody is concerned about this.”

A two-year, $750,000 translational grant from the National Institute of Neurological Disorders and Stroke should help Hess and his research team do the additional animal studies needed to move this safe and inexpensive technique for dementia to human studies.

“We think reduced cerebral blood flow, particularly in the deep white matter, is a major trigger of dementia,” Hess said. The white matter is primarily composed of axons, which connect neurons and different areas of the brain to each other and enable the brain to communicate with the body. The white protective coating on the axon is why this deep brain area is called white matter.

Hess, who is also a stroke specialist, says this area is particularly vulnerable to ischemia because the blood vessels that feed it are small and have long, tortuous routes. Strokes and/or impaired blood flow can lead to classic dementia symptoms such as forgetfulness and an unsteady gait.

By age 70, essentially everyone has some white matter disease, but in some it can be devastating. “You cannot go out in a car and find where you are going. You may not even be able to find your car. You can’t cook meals without setting the house on fire,” Hess said.

“What we want to do long term is find people who are at risk for dementia – they already have some white matter damage you can see on an MRI – then we condition them chronically with this device in their home,” Hess said. Chronically is a key word because, as with exercise, when this conditioning stops, so do its benefits. In fact, this passive therapy provides blood vessels many of the same benefits as exercise. “If you can exercise, you probably don’t need this,” Hess adds.

Previous studies in their animal model of vascular dementia have shown that just two weeks of daily, short bouts of ischemia to an appendage can improve the health of the important white matter. The new grant is allowing them to use a similar approach for periods of one and four months in older mice of both genders to better understand the mechanisms of action and how long and how often therapy is needed. While they don’t make as much as human, mice do make more amyloid, a protein that deposits in the brains of patients with Alzheimer’s, when brain blood flow is impaired. Mice make less with the conditioning, so the researchers also are looking further at that result.

A small intramural grant is enabling similar studies with a pig model in collaboration with University of Georgia colleagues Dr. Simon R. Platt, professor of neurology and neurosurgery in the College of Veterinary Medicine, and Dr. Franklin D. West, assistant professor in the College of Agricultural and Environmental Sciences.

While he notes that multiple natural mechanisms are activated, Hess and his team are focusing on how the temporary bouts of increased blood flow prompt endothelial cells to make the precursor for the blood vessel dilator nitric oxide.

“The enzyme that makes nitric oxide is upregulated and stimulated quickly,” Hess said. Nitric oxide gas has a short life, but when a lot is dumped in the blood, it’s oxidized into nitrite – the same stuff put in hot dogs – which circulates throughout the bloodstream so it goes wherever blood goes. Although just how this happens is unclear, when the nitrite gets to an area of low blood flow, it is converted back to nitric oxide, which helps improve flow, Hess said.

The MCG researchers are applying for federal funding to do trials in humans who are at high risk for stroke because of small vessel disease deep in the brain. In 2012, they published results of a small study in the journal Stroke indicating that successive, vigorous bouts of leg compressions following a stroke trigger natural protective mechanisms that reduce damage and double the effectiveness of the clot buster tPA. Similar studies have been done by others in patients with heart disease.

Vascular dementia is considered the second most common cause of dementia after Alzheimer’s disease, according to the Alzheimer’s Association. There are currently no drugs approved by the U.S. Food and Drug Administration specifically for vascular dementia.

Collaborators at MCG and GRU include Dr. Mohammad B. Khan, postdoctoral fellow in Dr. Hess’ lab; Dr. Nasrul Hoda, College of Allied Health Sciences; Dr. Philip Wang, Department of Psychiatry and Health Behavior; Dr. Ali Syed Arbab, Department of Biochemistry and Molecular Biology; Dr. Nathan Eugene Yanasak, Department of Radiology and Imaging;  and Dr. Jennifer Waller, Department of Biostatistics and Epidemiology.

Even mild traumatic brain injuries can kill brain tissue

kirovweb1[1]Scientists have watched a mild traumatic brain injury play out in the living brain, prompting swelling that reduces blood flow and connections between neurons to die.

“Even with a mild trauma, we found we still have these ischemic blood vessels and, if blood flow is not returned to normal, synapses start to die,” said Dr. Sergei Kirov, neuroscientist and Director of the Human Brain Lab at the Medical College of Georgia at Georgia Regents University.

They also found that subsequent waves of depolarization – when brain cells lose their normal positive and negative charge – quickly and dramatically increase the losses.

Researchers hope the increased understanding of this secondary damage in the hours following an injury will point toward better therapy for the 1.7 million Americans annually experiencing traumatic brain injuries from falls, automobile accidents, sports, combat and the like.  While strategies can minimize impact, no true neuroprotective drugs exist, likely because of inadequate understanding about how damage unfolds after the immediate impact.

Kirov is corresponding author of a study in the journal Brain describing the use of two-photon laser scanning microscopy to provide real-time viewing of submicroscopic neurons, their branches and more at the time of impact and in the following hours.

Scientists watched as astrocytes – smaller cells that supply neurons with nutrients and help maintain normal electrical activity and blood flow – in the vicinity of the injury swelled quickly and significantly.  Each neuron is surrounded by several astrocytes that ballooned up about 25 percent, smothering the neurons and connective branches they once supported.

“We saw every branch, every small wire and how it gets cut,” Kirov said. “We saw how it destroys networks. It really goes downhill. It’s the first time we know of that someone has watched this type of minor injury play out over the course of 24 hours.”

Stressed neurons ran out of energy and became silent but could still survive for hours, potentially giving physicians time to intervene, unless depolarization follows.  Without sufficient oxygen and energy, internal pumps that ensure proper polarity by removing sodium and pulling potassium into neurons, can stop working and dramatically accelerate brain-cell death.

“Like the plus and minus ends of a battery, neurons must have a negative charge inside and a positive charge outside to fire,” Kirov said. Firing enables communication, including the release of chemical messengers called neurotransmitters.

“If you have six hours to save tissue when you have just lost part of your blood flow, with this spreading depolarization, you lose tissue within minutes,” he said.

While common in head trauma, spreading depolarization would not typically occur in less-traumatic injuries, like his model. His model was chemically induced to reveal more about how this collateral damage occurs and whether neurons could still be saved. Interestingly, researchers found that without the initial injury, brain cells completely recovered after re-polarization but only partially recovered in the injury model.

While very brief episodes of depolarization occur as part of the healthy firing of neurons, spreading depolarization exacerbates the initial traumatic brain injury in more than half of patients and results in poor prognosis, previous research has shown.  However, a 2011 review in the journal Nature Medicine indicated that short-lived waves can actually protect surrounding brain tissue. Kirov and his colleagues wrote that more study is needed to determine when to intervene.

One of Kirov’s many next steps is exploring the controversy about whether astrocytes’ swelling in response to physical trauma is a protective response or puts the cells in destruct mode. He also wants to explore better ways to protect the brain from the growing damage that can follow even a slight head injury.

Currently, drugs such as diuretics and anti-seizure medication may be used to help reduce secondary damage of traumatic brain injury. Astrocytes can survive without neurons but the opposite is not true, Kirov said. The ratio of astrocytes to neurons is higher in humans and human astrocytes are more complex, Kirov said.

The research was supported by the National Institutes of Health.